Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    
Login 

Users Online: 1451 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
 


 
 Table of Contents    
ORIGINAL ARTICLE  
Year : 2019  |  Volume : 53  |  Issue : 2  |  Page : 333-339
The “Gastrocnemius–Achilles Tendon–Calcaneus complex”: Different responses after percutaneous versus vulpius achilles tendon lengthening in New Zealand white rabbits


1 Department of Pediatric Surgery, University Hospital Estaing, Clermont-Ferrand, France
2 Department of Life Sciences, University of Trieste, Trieste, Italy
3 Department of Food Science, Veterinary Pathology Section, University of Udine, Udine, Italy
4 Department of Orthopedics, St. Roch Hospital and University of Montpellier, Faculty of Medicine, Montpellier, France

Click here for correspondence address and email

Date of Web Publication22-Feb-2019
 

   Abstract 

Background: This study aimed to describe the clinical, radiological, biomechanical, electromyographic, and histoenzymologic modifications in the “Gastrocnemius–Achilles Tendon–Calcaneus complex” caused by percutaneous Achilles tendon lengthening (PATL) versus Vulpius Achilles tendon lengthening (VATL) in New Zealand White (NZW) rabbits. Materials and Methods: Eight female NZW rabbits were used at 7 months of age. Two rabbits were euthanized before surgery for anatomical dissection, three underwent PATL (two bilateral and one unilateral), and the three others underwent VATL (two bilateral and one unilateral). Clinical examination, biomechanics, electromyography, standard radiographs and magnetic resonance imaging (MRI), and histology and histoenzymology were assessed after surgery. Results: At the end of the experiment, the subjects showed good clinical status but different functional outcomes of surgery: rabbits submitted to PATL developed permanent limp and lost their capacity to jump compared to rabbits submitted to VATL which remained able to ambulate and jump normally. Standard radiographs and MRI showed that PATL led to significantly greater increase in dorsal or anterior flexion of the tibiotarsal angle (TT angle) compared to VATL, whereas electromyographic and histoenzymologic observations of muscle unit showed little or no variation between the two groups of operated rabbits. Conclusions: Although PATL leads to greater improvement in dorsal or anterior flexion (TT angle) of the rabbit ankle compared to VATL, it has negative effects on functional outcome as it reduces the contractile capacity of the rabbit muscle unit, ultimately impairing the ability to ambulate and jump.

Keywords: Comparison, congenital clubfoot, New Zealand White rabbits, percutaneous Achilles tendon lengthening, Vulpius lengthening

How to cite this article:
Canavese F, Barbetta D, Canavese B, Dimeglio A. The “Gastrocnemius–Achilles Tendon–Calcaneus complex”: Different responses after percutaneous versus vulpius achilles tendon lengthening in New Zealand white rabbits. Indian J Orthop 2019;53:333-9

How to cite this URL:
Canavese F, Barbetta D, Canavese B, Dimeglio A. The “Gastrocnemius–Achilles Tendon–Calcaneus complex”: Different responses after percutaneous versus vulpius achilles tendon lengthening in New Zealand white rabbits. Indian J Orthop [serial online] 2019 [cited 2019 Mar 20];53:333-9. Available from: http://www.ijoonline.com/text.asp?2019/53/2/333/252669



   Introduction Top


Congenital clubfoot can be treated with serial casting and percutaneous Achilles tendon lengthening (PATL), also known as the Ponseti method,[1],[2],[3],[4],[5] or with serial manipulations and Vulpius Achilles tendon lengthening (VATL), also known as the French functional physical therapy method.[6],[7] Both the methods achieve similar clinical outcome, reducing the need for extensive surgery.[8],[9],[10]

Both the Ponseti and the French functional physical therapy methods include an early surgical procedure aiming to correct the residual equinus. In particular, the PATL in the Ponseti method lengthens the tendon at the level of its distal portion whereas the VATL in the French functional physical therapy method leaves the tendon intact but lengthens the fascia of the gastrocnemius muscle.[11],[12] A mini-open technique for Achilles tenotomy in infants with congenital clubfoot has recently been proposed.[13],[14]

Rats, dogs, cats, and rabbits have been extensively used as animal models to study injury, surgery, and repair in the Achilles tendon.[15] In particular, rabbits have been used widely in this research context as they are easily available, and their muscle–tendon unit is suitably sized for both histologic and histoenzymologic assessments, radiology, magnetic resonance imaging (MRI), and biomechanical and electromyographic testing.[16],[17],[18] Moreover, rabbits and humans share a similar “Gastrocnemius–Achilles tendon–Calcaneus complex” based on gross anatomy observation and MRI studies,[16],[19],[20],[21] and both species are plantigrade and pentadactyl in different postures [22],[23] [Table 1].
Table 1: Similarities and differences in the “Gastrocnemius-Achilles Tendon-Calcaneus complex” between New Zealand White rabbits and humans

Click here to view


This study aimed to describe the clinical, radiological, biomechanical, electromyographic, and histoenzymologic modifications in the “Gastrocnemius–Achilles tendon–Calcaneus complex” caused by PATL versus VATL in New Zealand White (NZW) rabbits.


   Materials and Methods Top


Operative procedures and animal care were carried out in compliance with all national (Italian regulation D.L.vo 116/1992) and international (regulation 86/609/EC) legislation. Before starting the study, the protocol was first examined and approved by the Institutional Review Board of the Animal Facility at the Department of Life Sciences, University of Trieste, Italy, and subsequently transferred and approved by the Ministry of Health, Rome, Italy, in compliance with national and international regulations (D.L.vo 26/2014 and D.va 2010/63/UE). We worked to the ARRIVE guidelines for reporting animal research.[24]

Animals

This study used eight “germ-free” female NZW rabbits (Harlan Laboratories, Leicester, UK) housed in a climate-controlled environment (21°C temperature, 40%–50% relative humidity, 10–15 air changes per hour, and 12 h/12 h light/dark cycle) in stainless-steel cages. Cages measured 0.7 m in length, 0.43 m in height, and 0.53 m in depth, and cage volume was 0.17 m 3. Rabbits were fed a standard pellet diet (2030 Global Rabbit Diet 2030, Harlan Laboratories, Indianapolis, IN, USA) and water ad libitum. A tattoo on the left ear served to identify the rabbits.

Two rabbits were euthanized before surgery for anatomical dissection, to study the lower leg anatomy of Oryctolagus cuniculus [Table 1].

Surgery was performed in six 7-month-old rabbits: three rabbits underwent PATL and the other three were operated according to the VATL technique.[2],[3],[15],[16],[17]

Anesthesia, postoperative treatment, and euthanasia

Anesthesia

All surgeries were performed under general anesthesia (GA) obtained by an intramuscular injection of xylazine 2.5 mg/kg (Virbaxil ® 2%, Virbac Laboratories, Carros, France) and tiletamine-zolazepam 7.5 mg/kg (Zoletil ® 100, Virbac Laboratories, Carros, France). Subsequent local and cutaneous anesthesia was obtained with a subcutaneous injection of 2% lidocaine hydrochloride (1 ml/animal).

Postoperative treatment

In the postoperative period, pain was relieved by subcutaneous administration of carprofen (Rimadyl ®, Pfizer Animal Health, West Dundee, UK; 5 mg/kg twice daily for 5 days). In the week following surgery, rabbits were administered an intramuscular injection of enrofloxacin (Baytril ® 5%, Bayer Animal Health, Kiel, Germany; 5 mg/kg twice daily) to prevent infection.

Euthanasia

Rabbits were anesthetized with an intramuscular injection of xylazine 5 mg/kg (Virbaxil ® 2%; Virbac Laboratories, Carros, France) and tiletamine-zolazepam 15 mg/kg (Zoletil ® 100, Virbac Laboratories, Carros, France), euthanized with an intravenous injection of embutramide-mebenzonio-tetracaine 26 mg/kg (Tanax ®, Intervet Italia Srl, Peschiera Borromeo, Italy), then, after death, jugulated.

Operative procedure

Surgery was performed in six 7-month-old rabbits. Three rabbits underwent PATL, with bilateral lengthening in two cases and unilateral lengthening in one case. Three rabbits were operated according to the VATL technique, again with bilateral lengthening in two cases and unilateral lengthening in one case.[2],[5]

The protocol for each rabbit involved (i) prepping and draping of the lower extremity, (ii) PATL at the level of the distal portion [1] [Figure 1] or section of the fascia of the gastrocnemius muscle (VATL) leaving the Achilles tendon intact [11],[12] [Figure 2], (iii) spica cast immobilization, and (iv) cast removal 3–4 weeks after index surgery.
Figure 1: Small skin incision (a) and percutaneous Achilles tendon lengthening at the level of its distal portion (b)

Click here to view
Figure 2: Exposure (a) and section (b) of the fascia of the Gastrocnemius muscle (Vulpius Achilles tendon lengthening), leaving the Achilles tendon intact

Click here to view


Clinical evaluation

The weight of each rabbit was recorded before surgery, immediately after cast removal, and every 7–10 days thereafter until the end of the experiment, i.e., 4 months after surgery. Overall, body weight was assessed 14 times to monitor postoperative recovery and to assess well-being of rabbits regularly.

During the postoperative period, rabbits were clinically assessed every day while in cast and every 4–6 days after cast removal. Clinical evaluation regularly assessed ambulation, jumping capabilities, and tibiotarsal angle (TT) of each subject.

Electromyography

Each rabbit underwent one electromyographic evaluation with an elecrotmyograph (MV TO S/N 532 device; B Neuro S. P. A., Florence, Italy) performed 2 weeks after cast removal in all rabbits. The electrodes were placed at the medial and lateral head of the gastrocnemius and evaluated muscle fibers depolarization following electrical stimulation. Right and left sides were assessed alternately. Each measurement was performed twice in order to evaluate the presence of possible myopathy and/or muscle weakness.

Radiographic evaluation: Standard radiographs and magnetic resonance imaging

Standard radiographs and MRI were performed 4 months after surgery.

Lateral radiographs of the leg and foot were performed under GA in all rabbits. To standardize measurements, an elastic bandage was placed between the foot and leg, enabling the TT angle to be measured with constant tension applied at the level of the “Gastrocnemius–Achilles tendon–Calcaneus complex”. TT angle was defined as the angle between the main axis of the tibia and the main axis of the calcaneus.

All MRI scan examinations (T1 and T2 weighted) were performed on a 3T Bruker BioSpec MRI scanner (Bruker Biospin Corporation, Billerica, MA, USA) under GA with the lower extremity kept in neutral position. The MRI images served to perform an objective assessment of the healing of the “Gastrocnemius–Achilles tendon–Calcaneus complex.”

Histoenzymology and histology

Histoenzymology

Immediately after euthanasia–jugulation, 0.3–0.5 cm 3, two to three tissue samples were harvested from the mid-portion of the gastrocnemius muscle belly of each lower extremity of all rabbits. Specimens were immediately mounted for transverse section on a cork disk frozen at −160°C in isopentane/liquid nitrogen cooling bath. Frozen blocks were conserved at −80°C and 3–5 μm sections were cut in a cryostat. Reactions for adenosine triphosphatase at pH 9.4 and preincubation at pH 4.35 and pH 4.63 were carried out to assess Type I, Type IIA, and Type IIB muscle fibers.

Histology

Immediately after euthanasia–jugulation, four 0.5–1 cm 3 tissue samples (one per site). were harvested from the gastrocnemius muscle belly and Achilles tendon as follows: (a) transverse (muscle), (b) transverse (fascia), (c) longitudinal (Achilles tendon), and (d) transverse (Achilles tendon). Samples were fixed in 10% buffered formalin, embedded in paraffin, and microtomed to 8–10 μm-thick sections for routine hematein–eosin–safran staining.


   Results Top


Body weight and clinical evaluation

[Table 2] shows the weight changes in operated rabbits. Following surgery, all rabbits lost body weight. After cast removal, all rabbits gained body weight but without recovering their initial values before 4 months after index surgery [Table 2]. Weight variations were not significantly different between the two groups of rabbits (P > 0.05).
Table 2: Weight changes in operated rabbits

Click here to view


[Table 3] outlines the clinical findings on all rabbits in postoperative followup [Table 3].
Table 3: Clinical findings during postoperative followup

Click here to view


Electromyography

Electromyography assessment performed 2 weeks after cast removal found that all rabbits did not show any sign of myopathy or muscle weakness at the level of the lateral and medial head of the right and left gastrocnemius. Electromyography assessment was found to be within normal limits in all rabbits.

Radiographic evaluation

[Table 4] shows the variations in TT angle of all operated rabbits [Table 4]. TT angle measured on standard lateral leg and foot radiographs of each subject [Figure 3] was significantly decreased in PATL compared to VATL rabbits (P < 0.05).
Table 4: Variations in tibiotarsal angle

Click here to view
Figure 3: Tibiotarsal angle was defined as the angle between the main axis of the tibia and the main axis of the calcaneus. Lateral radiographs showing a 44° tibiotarsal angle of a nonoperated leg (a), a 31° tibiotarsal angle of a leg submitted to Vulpius Achilles tendon lengthening (b) and 12° tibiotarsal angle of a leg submitted to percutaneous Achilles tendon lengthening (c)

Click here to view


MRI was performed under GA on all rabbits at 4 months after index surgery with both legs in the same image to allow precise comparison between muscle–tendon units. MRI images showed complete healing of both Achilles tendon and gastrocnemius fascia [Figure 4]. MRI assessment found no signs of denervation in any of the rabbits.[21]
Figure 4: Magnetic resonance imaging of nonoperated leg (a), leg submitted to Vulpius Achilles tendon lengthening (b) and leg submitted to percutaneous Achilles tendon lengthening (c). In (b), the arrow shows the scar at the level of the lengthened gastrocnemius fascia. In (c), the arrow shows the scar located between the proximal and distal end of the interrupted Achilles tendon

Click here to view


Histoenzymology and histology

Histoenzymology

Histoenzymology images gave a picture of the possible variations in distributions of the main muscle fiber Types I, IIA, and IIB identified by myosin-ATPase activity: slow-twitch oxidative muscle fibers (Type I) and fast-twitch oxidative glycolytic (Type IIA and glycolytic Type IIB). Gross qualitative-only examination of histoenzymologic pictures did not reveal any difference between muscle fiber types of the nonoperated and operated rabbit legs (PATL vs. VATL) [Figure 5].
Figure 5: Muscle fibers typed as I, IIA, and IIB based on myosin-ATPase activity: Type I (slow-twitch oxidative; black color) and Type IIA (fast-twitch glycolitic; white color)

Click here to view


Histology

Histological observations on the muscle and tendon of both operated and nonoperated legs showed no structural difference in specimens from both groups of all rabbits that survived to reach the end of experiment: Muscle and tendon had normal microscopic anatomy and similar pictures in nonoperated legs and VATL animals only, whereas tendon rupture/resection remained in PATL animals [Figure 6].
Figure 6: Histology image of the Gastrocnemius muscle and its fascia, before Vulpius Achilles tendon lengthening

Click here to view



   Discussion Top


This experimental study aimed to compare the outcome of PATL and VATL in NZW rabbits. Animals were evaluated clinically, radiologically, and with electromyography, and evaluation was completed with histology and histoenzymology of muscle and tendon specimens. Although PATL and VATL had comparable histologic, histoenzymologic, and electromyographic results, they had different clinical and radiological outcome [Table 5].
Table 5: Comparison between nonoperated rabbits (control) and rabbits submitted to percutaneous Achilles tendon lengthening and Vulpius Achilles tendon lengthening

Click here to view


Pre- and postoperative measurements of TT angle showed that PATL modifies TT angle more than VATL. TT angle in rabbits submitted to PATL varied by about 40° clinically and 30° radiologically, while TT angle in rabbits submitted to VATL varied by about 30° clinically and 15° radiologically [Table 4]. However, rabbits submitted to PATL had poorer functional outcome than rabbits undergoing VATL. In particular, rabbits submitted to PATL developed permanent limp and lost the ability to jump whereas rabbits submitted to VATL remained able to ambulate and jump normally [25],[26] [Table 3].

Evaluations in normal rabbits may at first seem different from observations in children with clubfoot, but in our opinion, they share comparable meaningfulness. In particular, as both PATL and VATL differentially increase TT angle in rabbits, they can be expected to have similar effects in children with congenital clubfoot.[2],[3],[7],[9],[25],[26] Anatomy, anatomic relationships of “Gastrocnemius–Achilles tendon–Calcaneus complex”, and some postural attitudes were found to be grossly comparable between rabbits and humans, although differences exist and must be taken into account when using rabbit Achilles tendon as a research model.[11],[14],[17],[25],[26] In particular, the lateral and medial gastrocnemius tendon fibers merge into the Achilles tendon very distally, the soleus makes only a negligible contribution, and a large flexor digitorum superficialis tendon within the tendon sheath rotates dorsally and laterally and runs posterior to the Achilles tendon–calcaneus insertion.[9] In addition, in rabbits, the flexor digitorum superficialis and medial and lateral gastrocnemius tendon are almost the same size and share the same fascia, which means that PATL lengthens all three tendons together and it may explain limping and gait disturbance in rabbits submitted to PATL [9],[22],[26] [Table 1].

In rabbits submitted to PATL, after the Achilles tendon healed, the tension of the muscle–tendon unit never recovered preoperative values, most probably because surgery lengthened the flexor digitorum superficialis tendon and it was performed in subjects that were already skeletally mature. Conversely, in rabbits submitted to VATL, the tension of the muscle–tendon unit remained good enough to allow the rabbits to walk and jump normally.

Note that after surgery (a) the length of bones remains constant; (b) the distance between the proximal and distal insertion of the muscle–tendon unit remains unchanged; and (c) postsurgery, only the ratio between the muscular and tendinous portion of the muscle–tendon unit is modified. Following PATL, the muscular portion of the muscle–tendon unit becomes retracted, and as a result, its initial length becomes shorter. In particular, the distance between distal insertion of the Achilles tendon and distal end of the muscle belly increases, leading to a reduction of the muscle/tendon ratio of the muscle–tendon unit. We hypothesized that the association between the retraction of the muscle and the lengthening of the tendon results in a reduction of the muscle/tendon ratio, which ultimately leads to a loss of contractile efficiency of the muscle–tendon unit.

The results analyzed carry limitations. First, this was a preliminary study and thus involves a relatively small number of subjects. Second, there are anatomical differences between rabbits and humans, although these differences were taken into account before the study started and anatomical dissection was performed before surgery, which allowed us to note that it was possible to perform both the surgical techniques in rabbits in the same way as usually performed in children. Third, even if humans and rabbits are both plantigrade and pentadactyl, they do not share exactly the same posture; it should however be noted that the orientation of the angle TT is the same.


   Conclusions Top


The Achilles lengthening procedures applied here on the “Gastrocnemius–Achilles tendon–Calcaneus complex” of healthy skeletally mature rabbits, which are anatomically similar to humans, had different outcomes: (1) PATL led to significantly higher tendon lengthening than VATL; (2) PATL led to significantly more reduction in TT angle than VATL; (3) although PATL leads to greater improvement in dorsal or anterior flexion of the rabbit ankle compared to VATL, it tended to negatively impair the ability to ambulate and jump. However, muscle histoenzymology, like electromyographic analysis, did not find significant differences among the two groups, and the surgical interventions applied here to normal rabbits succeeded in amplifying the differences obtained with the same surgical interventions performed in human clubfoot.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Ponseti IV, Smoley EN. Congenital clubfoot: The results of treatment. J Bone Joint Surg Am 1963;45:2261-70.  Back to cited text no. 1
    
2.
Ponseti IV. Congenital Clubfoot: Fundamentals of Treatment. Oxford: Oxford University Press; 1996.  Back to cited text no. 2
    
3.
Dobbs MB, Morcuende JA, Gurnett CA, Ponseti IV. Treatment of idiopathic clubfoot: An historical review. Iowa Orthop J 2000;20:59-64.  Back to cited text no. 3
    
4.
Nordin S, Aidura M, Razak S, Faishan WI. Controversies in congenital clubfoot: Literature review. J Med Sci 2002;9:34-40.  Back to cited text no. 4
    
5.
Staheli L. Clubfoot: Ponseti Management. Global HELP 2003-2016. 3rd ed. Berlin: Springer; 2009.  Back to cited text no. 5
    
6.
Canavese F, Mansour M, Moreau-Pernet G, Gorce Y, Dimeglio A. The hybrid method for the treatment of congenital talipes equinovarus: Preliminary results on 92 consecutive feet. J Pediatr Orthop B 2017;26:197-203.  Back to cited text no. 6
    
7.
Dimeglio A, Canavese F. The French functional physical therapy method for the treatment of congenital clubfoot. J Pediatr Orthop B 2012;21:28-39.  Back to cited text no. 7
    
8.
Richards BS, Faulks S, Rathjen KE, Karol LA, Johnston CE, Jones SA, et al. A comparison of two nonoperative methods of idiopathic clubfoot correction: The Ponseti method and the French functional (physiotherapy) method. J Bone Joint Surg Am 2008;90:2313-21.  Back to cited text no. 8
    
9.
Chotel F, Parot R, Seringe R, Berard J, Wicart P. Comparative study: Ponseti method versus French physiotherapy for initial treatment of idiopathic clubfoot deformity. J Pediatr Orthop 2011;31:320-5.  Back to cited text no. 9
    
10.
Bergerault F, Fournier J, Bonnard C. Idiopathic congenital clubfoot: Initial treatment. Orthop Traumatol Surg Res 2013;99:S150-9.  Back to cited text no. 10
    
11.
Vulpius O, Stoffel A. Orthopaedische Operationslebre. 2nd ed. Stuttgart: Ferdinad Enke; 1920.  Back to cited text no. 11
    
12.
Yngve DA, Chambers C. Vulpius and Z-lengthening. J Pediatr Orthop 1996;16:759-64.  Back to cited text no. 12
    
13.
Meier Bürgisser G, Calcagni M, Bachmann E, Fessel G, Snedeker JG, Giovanoli P, et al. Rabbit achilles tendon full transection model-wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery. Biol Open 2016;5:1324-33.  Back to cited text no. 13
    
14.
MacNeille R, Hennrikus W, Stapinski B, Leonard G. A mini-open technique for Achilles tenotomy in infants with clubfoot. J Child Orthop 2016;10:19-23.  Back to cited text no. 14
    
15.
Doherty GP, Koike Y, Uhthoff HK, Lecompte M, Trudel G. Comparative anatomy of rabbit and human Achilles tendons with magnetic resonance and ultrasound imaging. Comp Med 2006;56:68-74.  Back to cited text no. 15
    
16.
Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C. Morphological, immunochemical, and biochemical study of rabbit Achilles tendon at various ages. J Bone Joint Surg Am 1980;62:583-98.  Back to cited text no. 16
    
17.
Trudel G, Koike Y, Ramachandran N, Doherty G, Dinh L, Lecompte M, et al. Mechanical alterations of rabbit Achilles' tendon after immobilization correlate with bone mineral density but not with magnetic resonance or ultrasound imaging. Arch Phys Med Rehabil 2007;88:1720-6.  Back to cited text no. 17
    
18.
Kalmar B, Blanco G, Greensmith L. Determination of muscle fiber type in rodents. Curr Protoc Mouse Biol 2012;2:231-43.  Back to cited text no. 18
    
19.
Schweitzer ME, Karasick D. MR imaging of disorders of the Achilles tendon. AJR Am J Roentgenol 2000;175:613-25.  Back to cited text no. 19
    
20.
Pirani S, Zeznik L, Hodges D. Magnetic resonance imaging study of the congenital clubfoot treated with the Ponseti method. J Pediatr Orthop 2001;21:719-26.  Back to cited text no. 20
    
21.
Richards BS, Dempsey M. Magnetic resonance imaging of the congenital clubfoot treated with the French functional (physical therapy) method. J Pediatr Orthop 2007;27:214-9.  Back to cited text no. 21
    
22.
Barone R. Anatomie Comparée des Mammifères Domestiques. Tome I-VI. Paris: Vigot Frères Editeurs; 1999-2004.  Back to cited text no. 22
    
23.
Williams PL, Warwick R, Dyson M, Bannister LH. Gray's Anatomy. 37th ed. London, UK: Longman Group UK Limited; 1989.  Back to cited text no. 23
    
24.
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol 2010;8:e1000412.  Back to cited text no. 24
    
25.
Buschmann J, Müller A, Nicholls F, Achermann R, Bürgisser GM, Baumgartner W, et al. 2D motion analysis of rabbits after Achilles tendon rupture repair and histological analysis of extracted tendons: Can the number of animals be reduced by operating both hind legs simultaneously? Injury 2013;44:1302-8.  Back to cited text no. 25
    
26.
Turk C, Guney A, Halici M, Kafadar I, Oner M, Zumurut M. Results of repair of the acute Achilles tendon rupture through different methods (an experimental study). J Bone Joint Surg Br 2010;92 Suppl IV:591.  Back to cited text no. 26
    

Top
Correspondence Address:
Prof. Federico Canavese
Department of Pediatric Orthopedic Surgery, University Hospital Estaing, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand
France
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ortho.IJOrtho_397_17

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


 
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Figures
    Article Tables
 

 Article Access Statistics
    Viewed129    
    Printed15    
    Emailed0    
    PDF Downloaded7    
    Comments [Add]    

Recommend this journal