Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    
Login 

Users Online: 172 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 53  |  Issue : 1  |  Page : 148-153

A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: An In vitro study


1 Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
2 Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
3 Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Dr. Benu Dhawan
Department of Microbiology, All India Institute of Medical Sciences, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ortho.IJOrtho_66_18

Rights and Permissions

Background: Bacterial adherence and biofilm formation on the surface of biomaterials can often lead to implant-related infections, which may vary depending on the species of microorganisms, type of biomaterial used, and physical characteristics of implant surfaces. However, there are limited studies specifically comparing biofilm formation between commonly used metallic orthopaedic implant materials and different bacterial strains. This in vitro study is to evaluate the ability of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa to adhere to and to form biofilms on the surface of five orthopaedic biomaterials, viz., cobalt and chromium, highly cross-linked polyethylene, stainless steel, trabecular metal, and titanium alloy. Materials and Methods: Bacterial adherence and bacterial biofilm-formation assays were performed by culturing S. aureus ATCC 29213, S. epidermidis ATCC 35984, E. coli ATCC 35218, K. pneumoniae ATCC 700603, and P. aeruginosa ATCC 27853 for 48 h on five different biomaterials. Quantitative bacterial adherence and biofilm formation were analyzed with a scanning electron microscope. Results: The highest level of adherence was observed on highly cross-linked polyethylene, followed by titanium, stainless steel, and trabecular metal, with the lowest occurring on the cobalt-chromium alloy. Among the bacterial strains tested, the ability for high adherence was observed with S. epidermidis and K. pneumoniae followed by P. aeruginosa and E. coli, whereas S. aureus showed the least adherence. Conclusion: Cobalt-chromium was observed to have the lowest proclivity towards bacterial adherence compared to the other biomaterials tested. However, bacterial adhesion occurred with all the materials. Hence, it is necessary to further evaluate newer biomaterials that are resistant to bacterial adherence.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed62    
    Printed0    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal