Neurobionplus
Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    
Login 

Users Online: 888 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
 


 
 Table of Contents    
ORIGINAL ARTICLE  
Year : 2011  |  Volume : 45  |  Issue : 6  |  Page : 504-507
Radiological assessment of cervical lateral mass screw angulations in Asian patients


1 Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
2 Department of Orthopaedic Surgery, Prince Court Medical Centre, Kuala Lumpur, Malaysia

Click here for correspondence address and email

Date of Web Publication4-Nov-2011
 

   Abstract 

Background: Various lateral mass screw fixation methods have been described in the literature with various levels of safety in relation to the anterior neurovascular structures. This study was designed to radiologically determine the minimum lateral angulations of the screw to avoid penetration of the vertebral artery canalusing three of the most common techniques: Roy-Camille, An, and Magerl.
Materials and Methods: Sixty normal cervical CT scans were reviewed. A minimum lateral angulation of a 3.5 mm lateral mass screw which was required to avoid penetration of the vertebral artery canal at each level of vertebra were measured.
Results: The mean lateral angulations of the lateral mass screws (with 95% confidence interval) to avoid vertebral artery canal penetration, in relation to the starting point at the midpoint (Roy-Camille), 1 mm medial (An), and 2 mm medial (Magerl) to the midpoint of lateral mass were 6.8° (range, 6.3-7.4°), 10.3° (range, 9.8-10.8°), and 14.1° (range, 13.6-14.6°) at C3 vertebrae; 6.8° (range, 6.2-7.5°), 10.7° (range, 10.0-11.5°), and 14.1° (range, 13.4-14.8°) at C4 vertebrae; 6.6° (range, 6.0-7.2°), 10.1° (range, 9.3-10.8°), and 13.5° (range, 12.8-14.3°) at C5 vertebrae and 7.6° (range, 6.9-8.3°), 10.9° (range, 10.3-11.6°), and 14.3° (range, 13.7-15.0°) at C6 vertebrae. The recommended lateral angulations for Roy-Camille, Magerl, and An are 10°, 25°,and 30°, respectively. Statistically, there is a higher risk of vertebral foramen violation with the Roy-Camille technique at C3, C4 and C6 levels, P < 0.05.
Conclusions: Magerl and An techniques have a wide margin of safety. Caution should be practised with Roy-Camille's technique at C3, C4, and C6 levels to avoid vertebral vessels injury in Asian population.

Keywords: Asians, cervical spine, lateral mass screw, angulation

How to cite this article:
Sureisen M, Saw LB, Chan CY, Singh DA, Kwan MK. Radiological assessment of cervical lateral mass screw angulations in Asian patients. Indian J Orthop 2011;45:504-7

How to cite this URL:
Sureisen M, Saw LB, Chan CY, Singh DA, Kwan MK. Radiological assessment of cervical lateral mass screw angulations in Asian patients. Indian J Orthop [serial online] 2011 [cited 2019 Aug 20];45:504-7. Available from: http://www.ijoonline.com/text.asp?2011/45/6/504/87118

   Introduction Top


Posterior instrumentation using lateral mass screws had gained popularity compared to a sublaminar wiring technique especially in cases where laminectomy was indicated. Various authors have reported that posterior lateral-mass screw fixation provides equal or greater biomechanical stability than anterior plating or posterior wiring fixation. [1],[2],[3],[4]

Various techniques of lateral screw placement have been described. The commonly used methods are the Roy-Camille, Louis, Anderson, An, and Magerl techniques. [5],[6],[7],[8],[9] Each has its unique entrance point for screw insertion and screw trajectory. Excluding the Roy-Camille and Louis techniques, the screw trajectories in the rest of the three techniques are directed superiorly and laterally. [10] The screw trajectory is of critical importance because nerve roots, vertebral arteries and facet joints are at risk of injury with errant positioning. A lot of effort has been made to determine the safety of lateral mass screw placement in cadaveric models. [10],[11],[12],[13] However to our knowledge, there is no radiological evaluation of the lateral angulation required to avoid the neurovascular structures.

We embarked on this study to objectively measure the lateral angulation required to avoid penetration of the vertebral artery canal in three of the most commonly applied techniques, Roy-Camille, An, and Magerl [Figure 1], based on the cervical CT scan model.
Figure 1: Diagrammatic presentation entry point and lateral angulation of the common techniques in lateral mass screw insertion. Left, Roy-Camille technique. Middle, An technique. Right, Magerl technique

Click here to view



   Materials and Methods Top


Digitised computed tomography images of the cervical spine (using IMPAX software from AGFA HealthCare) performed from 1 st January 2007 to 31 st December 2008 were utilised in the study. The CT images were screened through to exclude the following pathologies, i.e. fractures, dislocations, tumorous lesions, and infection. Similarly, images with oblique axial cuts were excluded from this study. Sixty normal cervical CT scans with symmetrically perpendicular axial cuts at each level between C3 and C6 were selected from our digital image database. All measurements were performed by a single assessor, and the mean of three measured values were taken to reduce interobserver variation.

The axial section through the base of inferior articular process was chosen [Figure 2]a, and a vertical line (A-B) bisecting the body, spinal canal, and spinous process was drawn. The midpoint of lateral mass was determined; it corresponds to the midpoint between the medial edge of inferior articular process and the lateral edge of lateral mass. The perpendicular distance of this midpoint from the line A-B is documented as distance X. A second axial section through the mid-distance between inferior articular process of upper vertebrae and the measured vertebrae were selected [Figure 2]b. The axis line A-B is redrawn, and the X distance from line A-B is marked which represents the centre point of lateral mass (point M).
Figure 2: (a) Determination of the center point of lateral mass (M). (b) Center point of lateral mass (M), screw entry point (C), and lateral angulation of screw (C-D and C-E).

Click here to view


The entry points (point C) for the various techniques were measured based on this center point; (Roy-Camille technique) on the center point, (An technique) 1 mm medial, and (Magerl technique) 2 mm medial to the center point.

Screw projections were determined based on [Figure 2]b. A line parallel to the vertical axis (A-B) is drawn over the entry point (line C-D). The axis of screw will be represented by a straight line connecting the entry point of lateral mass and the point 1.75 mm (based on the 3.5 mm diameter screw is commonly used screw) lateral to the border of vertebral artery canal (line C-E). The angulation between the line C-D and the line C-E will be the minimum lateral angulation of the lateral mass screw. These measurements were repeated from C3 to C6 vertebra.

These data were analysed with SPSS (Version 16) to compute the demographic distribution and calculate the mean and 95% confidence interval of the minimum lateral angulations of lateral mass screws.


   Results Top


Sixty normal cervical spine CT scans were analysed using IMPAX software. Forty-two males and 18 females were included in this study with the racial distribution of Malay (n=30), Indian (n=13), Chinese (n=12) and other race (n=5). The mean age was 36.0 years old ( range18-68 years).

The mean minimum lateral angulation of the lateral mass screw (with 95% confidence interval) to avoid vertebral artery canal penetration, in relation to the starting point at the midpoint (Roy-Camille technique), 1 mm medial (An technique), and 2 mm medial (Magerl technique) to the midpoint of lateral mass for each level is shown in [Table 1].
Table 1: The mean of minimum lateral angulation of the lateral mass screw to avoid penetration of the vertebral artery canal (with 95% confidence interval) at each level of the typical cervical vertebrae


Click here to view


The amount of lateral angulation needed to avoid the vertebral vessels was the most at C6 vertebrae with a mean angulation of 7.6° (range, 6.9-8.3°), 10.9° (range, 10.3°-11.6°), 14.3° (range, 13.7°-15.0°) using Roy-Camille, An, and Magerl techniques, respectively. The C5 vertebral foramen is situated more medially in relation to lateral mass. As a result, the mean lateral angulation at the C5 vertebral level is the smallest angulation. At C4 and C3 vertebrae, the vertebral artery canal appears to shift more laterally compared to C5, and this had increased the mean lateral angulation angle.

Referring to published literatures, the recommended lateral angulation for Roy-Camille, An, and Magerl techniques is 10°, 30°, and 25°, respectively. [5],[9],[10] With reference to [Table 1], these techniques are safe in our Asian population based on the analysis of the 60 cervical CT scans.


   Discussion Top


To prevent injury to the vertebral artery during the posterior instrumentation procedure, anatomical knowledge of the location of the vertebral artery in relation to the lateral mass is critical. Ebraheim et al. reported the mean distance of transverse foramen from the lateral border of vertebral body to be approximately 2 mm; however, no measurement available for anatomical landmarks posteriorly. [14] We embarked on an effort to determine the minimum lateral angulation necessary to avoid the vertebral artery canal in relation to the starting point of the few common techniques of lateral mass screw insertion, the Roy-Camille, An and Magerl, by using CT scan. [6]

Merola et al. conducted an anatomical study on the safety of lateral mass screw placement on 10 fresh frozen cadaveric cervical spines. [15] He concluded that the Roy-Camille technique shows a higher preponderance to violate the vertebral vessel at C6 and C7 vertebrae while the Magerl and Anderson technique is relatively safe.

Our study result showed that all the three techniques of applying lateral mass screw are safe, the mean angulation to avoid vertebral artery in the Roy-Camille range from 6.6 to 7.6° for C3-C6 while the recommended angulation is 10°, similarly in the An and Magerl technique range 10.1°-10.9° and 13.5°-14.3° and the recommended angulations are 30° and 25°. The important differences between these techniques are the safety margin. In the Roy-Camille technique, the margin of safety (recommended angulation-upper 95% confidence limit) is very narrow (range 1.7°-2.8°). Meanwhile, the An and Magerl techniques have a wider range of the safety margin (range, 18.4°-19.3° and 10.0°-10.7°, respectively). Therefore, the Roy-Camille technique has a smaller margin of safety as compared to the An and Magerl technique in our Asian population.

In this study, the radiological outcomes confirm that the Roy-Camille, An and Magerl techniques are feasible and safe in our Asian population. However, the Roy-Camille technique has a smaller safety margin, in comparison with the other two techniques. Therefore, we would like to suggest advocating caution in utilising this technique in Asian population. [15]


   Conclusion Top


Roy-Camille, An, and Magerl techniques of applying the lateral mass screws in Asian population is safe and feasible. Caution should be exercised with the Roy-Camille technique because of the smaller safety margin as compared to the An and Magerl technique.

 
   References Top

1.Coe JD, Warden KE, Sutterlin CE 3 rd , McAfee PC. Biomechanical evaluation of cervical spine stabilization methods in a human cadaveric model. Spine (Phila Pa 1976) 1989;14:1122-31.  Back to cited text no. 1
    
2.Gill K, Paschal S, Corin J, Ashman R, Bucholz RW. Posterior plating of the cervical spine. A biomechanical comparison of different posterior fusion techniques. Spine (Phila Pa 1976) 198813:813-6.  Back to cited text no. 2
    
3.Kotani Y, Cunningham BW, Abumi K, McAfee PC. Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine (Phila Pa 1976) 1994;19:2529-39.   Back to cited text no. 3
    
4.Sutterlin CE, McAfee PC, Warden KE, Rey RM Jr, Farey ID. A biomechanical evaluation of cervical spinal stabilization methods in a bovine model. Static and cyclical loading. Spine (Phila Pa 1976) 1988;13:795-802.   Back to cited text no. 4
    
5.An HS, Gordin R, Renner K. Anatomic considerations for plate-screw fixation of the cervical spine. Spine (Phila Pa 1976) 1991;16:548-51.  Back to cited text no. 5
    
6.Anderson PA, Henley MB, Grady MS, Montesano PX, Winn HR. Posterior cervical arthrodesis with AO reconstruction plates and bone graft. Spine (Phial Pa 1976) 1991;16:72-9.  Back to cited text no. 6
    
7.Jeanneret B, Magerl F, Ward EH, Ward JC. Posterior stabilization of the cervical spine with hook plates. Spine (Phila Pa 1976) 1991;16:56-63.  Back to cited text no. 7
    
8.Nazarian SM, Louis RP. Posterior internal fixation with screw plates in traumatic lesions of the cervical spine. Spine (Phila Pa 1976) 1991;16:64-71.  Back to cited text no. 8
    
9.Roy-Camille R, Saillant G, Mazel C. Internal fixation of the unstable cervical spine by posterior osteosynthesis with plates and screws. In: Sherk H, ed. The Cervical Spine. 2nd ed. Philadelphia: JB Lippincott. 1989: 390-403.  Back to cited text no. 9
    
10.Xu R, Haman SP, Ebraheim NA, Yeasting RA. The anatomic relation of lateral mass screws to the spinal nerves. A comparison of the Magerl, Anderson, and An techniques. Spine (Phila Pa 1976) 1999;24:2057-61.  Back to cited text no. 10
    
11.Ebraheim NA, Klausner T, Xu R. Safe lateral-mass screw lengths in the Roy-Camille and Magerl techniques. An anatomic study. Spine (Phila Pa 1976) 1998;23:1739-42.  Back to cited text no. 11
    
12.Heller JG, Carlson GD, Abitbol JJ, Garfin S. Anatomic comparison of the Roy-Camille and Magerl techniques for screw placement in the lower cervical spine. Spine (Phila Pa 1976) 1991;16:552-7.  Back to cited text no. 12
    
13.Xu R, Ebraheim NA, Klausner T, Yeasting RA. Modified Magerl technique of lateral mass screw placement in the lower cervical spine: An anatomy study. J Spinal Disord 1998;11:237-40.   Back to cited text no. 13
[PUBMED]    
14.Ebraheim NA, Reader D, Xu R, Yeasting RA. Location of the vertebral artery foramen on the anterior aspect of the lower cervical spine by computed tomography. J Spinal Disord 1997;10:304-7.  Back to cited text no. 14
[PUBMED]    
15.Merola AA, Castro BA, Alongi PR, Mathur S, Brkaric M, Vigna F, et al. Anatomic consideration for standard and modified techniques of cervical lateral mass screw placement. Spine J 2002;2:430-5.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  

Top
Correspondence Address:
Mun Keong Kwan
Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur
Malaysia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5413.87118

Rights and Permissions


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1]

This article has been cited by
1 Cervical lateral mass screw-rod fixation: Surgical experience with 2500 consecutive screws, an analytical review, and long-term outcomes
Mohammed M. Al Barbarawi,Mohammed Z. Allouh
British Journal of Neurosurgery. 2015; 29(5): 699
[Pubmed] | [DOI]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


 
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables
 

 Article Access Statistics
    Viewed9631    
    Printed148    
    Emailed5    
    PDF Downloaded139    
    Comments [Add]    
    Cited by others 1    

Recommend this journal