Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    

Users Online: 2048 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
Year : 2011  |  Volume : 45  |  Issue : 4  |  Page : 330-335

Vascularized fibular graft in infected tibial bone loss

Department of Orthopedic and Microvascular Surgery, Specialist's Hospital, North, Kochi, India

Correspondence Address:
C Cheriyan Kovoor
Department of Orthopedic and Microvascular Surgery, Specialist's Hospital, North, Kochi - 682 018
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-5413.82337

Rights and Permissions

Background : The treatment options of bone loss with infections include bone transport with external fixators, vascularized bone grafts, non-vascularized autogenous grafts and vascularized allografts. The research hypothesis was that the graft length and intact ipsilateral fibula influenced hypertrophy and stress fracture. We retrospectively studied the graft hypertrophy in 15 patients, in whom vascularized fibular graft was done for post-traumatic tibial defects with infection. Materials and Methods : 15 male patients with mean age 33.7 years (range 18 - 56 years) of post traumatic tibial bone loss were analysed. The mean bony defect was 14.5 cm (range 6.5 - 20 cm). The mean length of the graft was 16.7 cm (range 11.5 - 21 cm). The osteoseptocutaneous flap (bone flap with attached overlying skin flap) from the contralateral side was used in all patients except one. The graft was fixed to the recipient bone at both ends by one or two AO cortical screws, supplemented by a monolateral external fixator. A standard postoperative protocol was followed in all patients. The hypertrophy percentage of the vascularized fibular graft was calculated by a modification of the formula described by El-Gammal. The followup period averaged 46.5 months (range 24 - 164 months). The Pearson correlation coefficient (r) was worked out, to find the relationship between graft length and hypertrophy. The t-test was performed to find out if there was any significant difference in the graft length of those who had a stress fracture and those who did not and to find out whether there was any significant difference in hypertrophy with and without ipsilateral fibula union. The Chi square test was performed to identify whether there was any association between the stress fracture and the fibula union. Given the small sample size we have not used any statistical analysis to determine the relation between the percentage of the graft hypertrophy and stress fracture. Results : Graft union occurred in all patients in a mean time of 3.3 months, at both ends. At a minimum followup of 24 months the mean hypertrophy noted was 63.6% (30 - 136%) in the vascularized fibular graft. Ten stress fractures occurred in seven patients. The mean duration of the occurrence of a stress fracture in the graft was 11.1 months (2.5 - 18 months) postoperatively. The highest incidence of stress fractures was when the graft hypertrophy was less than 20%. The incidence of stress fractures reduced significantly after the graft hypertrophy exceeded 20%. Conclusion : In most cases hypertrophy of the vascularized fibular graft occurs in response to mechanical loading by protected weight bearing, and the amount of hypertrophy is variable. The presence or absence of an intact fibula has no bearing on the hypertrophy or incidence of stress fracture. The length of the fibular graft has no bearing on the hypertrophy or stress fracture.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded189    
    Comments [Add]    
    Cited by others 2    

Recommend this journal