Neurobionplus
Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    
Login 

Users Online: 1248 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
 


 
REVIEW ARTICLE Table of Contents   
Year : 2010  |  Volume : 44  |  Issue : 2  |  Page : 137-147
Congenital scoliosis - Quo vadis?


The Centre for Spinal Studies & Surgery, Queens Medical Centre, University Hospital, Nottingham, NG7 2UH, United Kingdom

Click here for correspondence address and email

Date of Web Publication27-Mar-2010
 

   Abstract 

Congenital spinal vertebral anomalies can present as scoliosis or kyphosis or both. The worldwide prevalence of the vertebral anomalies is 0.5-1 per 1000 live births. Vertebral anomalies can range from hemi vertebrae (HV) which may be single or multiple, vertebral bar with or without HV, block vertebrae, wedge shaped or butterfly vertebrae. Seventy per cent of congenital vertebral anomalies result in progressive deformities. The risk factors for progression include: type of defect, site of defect (junctional regions) and patient's age at the time of diagnosis. The key to success in managing these spinal deformities is early diagnosis and anticipation of progression. One must intervene surgically to halt the progression of deformity and prevent further complications associated with progressive deformity. Planning for surgery includes a preoperative MRI scan to rule out spinal anomalies such as diastematomyelia. The goals of surgical treatment for congenital spinal deformity are to achieve a straight growing spine, a normal standing sagittal profile, and a short fusion segment. The options of surgery include in situ fusion, convex hemi epiphysiodesis and hemi vertebra excision. These basic surgical procedures can be combined with curve correction, instrumentation and short segment fusion. Most surgeons prefer posterior (only) surgery for uncomplicated HV excision and short segment fusion. These surgical procedures can be performed through posterior, anterior or combined approaches. The advocates of combined approaches suggest greater deformity correction possibilities with reduced incidence of pseudoarthrosis and minimize crankshaft phenomenon. We recommend posterior surgery for curves involving only an element of kyphosis or modest deformity, whereas combined anterior and posterior approach is indicated for large or lordotic deformities. In the last decade, the use of growing rods and vertebral expandable prosthetic titanium rib has improved the armamentarium of the spinal surgeon in dealing with certain difficult congenital spinal deformities. The goal of growing rod treatment is to provide simultaneous deformity correction and allow for continued spinal growth. Once maximal spinal growth has been achieved, definitive fusion and instrumentation is performed.

Keywords: Congenital scoliosis, hemivertebrae, scoliosis

How to cite this article:
Debnath UK, Goel V, Harshavardhana N, Webb JK. Congenital scoliosis - Quo vadis?. Indian J Orthop 2010;44:137-47

How to cite this URL:
Debnath UK, Goel V, Harshavardhana N, Webb JK. Congenital scoliosis - Quo vadis?. Indian J Orthop [serial online] 2010 [cited 2019 Oct 19];44:137-47. Available from: http://www.ijoonline.com/text.asp?2010/44/2/137/61997

   Introduction Top


Congenital spinal vertebral anomalies can present as scoliosis or kyphosis or both. Congenital scoliosis is a lateral curvature of the spine that is due to the presence of vertebral anomalies causing an imbalance in the longitudinal growth of the spine. Most congenital scoliosis is often recognized at birth, but more subtle spinal defects can remain undetected. A key feature of congenital scoliosis is the presence of one or more abnormally formed vertebrae. When these anomalies are identified, the curve should be classified as congenital, even if the deformity is not apparent until adolescence. The worldwide prevalence of the vertebral anomalies is 0.5-1 per 1000 live births. [1]


   Embryology Top


The spine is formed during a process called somitogenesis. This formation takes place between the third and fourth week of gestation. In this process, segments of mesodermal tissue called somites are formed in pairs surrounding the eventual spinal cord. The antero-medial wall of the somite is called sclerotome. These somites are regularly sized and spaced, and this careful organization is essential for the normal patterning of the spine. These same somites also form the axial muscles that connect the vertebral segments, and the ribs associated with the thoracic vertebrae. Cells from the sclerotome spread out centrally to form an unsegmented, cellular perichondral sheath, which eventually forms the vertebral body. In the notochord, alternating zones of loose and dense zones appear (superior zonal cells forms the centrum of vertebra and the inferior zonal cells forms the intervertebral disc). Many other organs and tissues are being made during this important time in development, including the heart, kidneys, brain, limbs and other organs. Complex cellular cytoskeletal rearrangements and biomechanical changes occur during the segmentation phase. [2] Congenital vertebral defects identical to those in congenital scoliosis have resulted from disruption in somitogenesis as evident from animal models. Multiple theories have been suggested to explain the congenital vertebral anomalies e.g. failure to ossify, osseous metaplasia of annulus fibrosus or persistent notochord. [3]


   Genetics Top


A close interaction of genes and environment regulates the development of normal spine. Developmental studies in animal models have identified many genes regulating somite formation and segmentation. Recently, genes in the "notch" family have been shown to regulate development of vertebral precursors in the mouse [4],[5],[6],[7],[8] and defects in human notch genes have been associated with congenital vertebral defects. [9] Other genes which have been shown to be associated with congenital scoliosis are Pax1, DLL3 etc. [10],[11] Environmental factors also affect the delivery of the genetic instructions during development e.g. maternal diabetes and ingestion of anti-epileptic drugs during pregnancy. [12]

Wynne-Davies (1975) suggested that there is 1 in 100 risk of a first degree relative having a single vertebral malformation and a risk of 1 in 10 for multiple vertebral anomalies in either siblings or children of a patient. [13]


   Classification Top


The classification of congenital scoliosis is based upon the embryologic maldevelopment of the spine. The Scoliosis Research Society has accepted the classification of spinal deformities proposed by Goldstein and Waugh (1973) which includes a classification of congenital deformities devised by MacEwan et al. (1968) with subdivision into scoliosis, kyphosis or lordosis. [14],[15] The embryological etiology may be a failure of bone formation, a failure of bone segmentation, or both. Failures of formation may be complete and unilateral hemivertebrae (HV) or partial and unilateral (wedge vertebrae). Failures of segmentation may be unilateral, producing "bars," or bilateral, producing "blocks".


   Morphology Top


The absence of one pedicle and one half of the vertebral body results in HV. It may be unsegmented when it is fused with the adjacent vertebral bodies; partially segmented when fused to the vertebral body either above or below; a fully segmented one which is separated from the body above and below by a disc space. HV can occur in the ipsilateral adjacent levels of spine producing asymmetrical growth. HV may be counterbalanced by another one on the contra lateral side separated by one or several healthy vertebrae called hemimetameric shift. [16] HV usually occurs as extra spinal segments and is often accompanied by an extra rib. They may result from an abnormal cleavage of the primary ossification center.

The unilateral bars may act as growth tether and sometimes may span an ipsilateral formation defect, resulting in a unilateral bar and a contra lateral HV. [17] The mixed type may be difficult to define at birth since only 30% of spine is ossified. Most malformations occur at the apex of the curve. Most common curvatures are thoracic (64%) followed by thoracolumbar (20%), lumbar (11%) and lumbosacral (5%). [18]


   Associated Anomalies Top


Patients with congenital scoliosis frequently have other associated anomalies. Sometimes rib fusion or absence can be observed along with the spinal anomalies since ribs are formed in close association with the vertebrae. When the number of ribs on the right or left side do not match, congenital vertebral anomalies should be suspected. Associated congenital anomalies can also involve non-skeletal organs. [19] About 20 to 40% of patients with congenital vertebral malformations have renal anomalies, including unilateral kidney, ureteric duplication or obstruction. [20],[21] All patients with congenital scoliosis should have mandatory renal ultrasound or magnetic resonance imaging (MRI) scans. Opitz (1982) described the developmental field concept which gives an insight into the understanding of multisystem involvement; a defect in one system should direct us to the evaluation of others. [22]

A second area of concern is the detection of cardiac anomalies. About 10-15% of patients with congenital scoliosis have congenital heart defects ranging from atrial and ventricular septal defects to tetrology of fallot or transposition of great vessels. [23] A careful cardiovascular system evaluation with a screening echocardiogram is essential for these children. Restricted pulmonary function in patients with severe curves especially beyond 90º is of major concern since there is evidence of hypoplastic lung development. [24] All patients require respiratory function tests, especially vital capacity screening. Most organ defects are observed in the mixed defects (73%) followed by failure of formation (47%) and failure of segmentation (37%). [21]

Patients with segmented or mixed defects are at higher risk (35%) of having a neural axis abnormality e.g. diastematomyelia (split cord), tethered cord,  Chiari malformation More Details and intradural lipomas. [3] Up to 20% patients with congenital scoliosis have diastematomyelia, which should be addressed by resection prior to correcting the spinal deformity. Similar surgical treatment is required for other intraspinal anomalies before addressing the congenital spinal curvature. Routine MRI scan is essential in the evaluation of these patients. [25] The coronal and sagittal images may help to define the segmentation and formation defects in the anterior spine. The axial views can be viewed to look at the pedicle anatomy of the patient when contemplating transpedicular instrumentation.

Congenital scoliosis is associated with syndromes; Goldenhaar and VACTERL being the commonest associations followed by Klippel-Feil, Alagille, Jarcho Levin, Joubert, basal cell naevus, trisomy [18] and diabetic embryopathy. [10] Musculoskeletal anomalies associated with vertebral malformation are clubfeet, Sprengel's deformity, developmental dysplasia of hip and skeletal dysplasias.


   Natural History Top


Congenital curves tend to be very rigid and resistant to correction. The natural history of the individual curve should be understood, and deformities with relentless progression should not be allowed to worsen. In general, 25% congenital curves don't progress, 50% curves progress slowly and 25% progress rapidly. In those with a known tendency for progression, early surgical intervention, such as spinal fusion, is essential and preferable to prevent severe curves to develop. Early surgical intervention for children with congenital deformities that have a poor prognosis allows for additional growth in the involved areas of the spine.

The formation and segmentation defects usually have serious consequences in spinal growth during childhood. The severity of the congenital deformity depends on the type of anomaly, the site of occurrence, and the overall growth potential of the individual. [26] Winter et al. (1968) and later McMaster et al. (1982) reported that the rate of deterioration and the severity of spinal deformity can be predicted by assessing the type of anomaly and curve location. [26],[27] Approximately 75% patients required surgical fusion and 84% who were left untreated developed curves greater than 40º at skeletal maturity. Thoracolumbar curves tend to be more severe than other locations. Children with clinical deformities in the first year of life had the worst prognosis with early progression of curve magnitude. Generally curve progression occurs more rapidly during the first five years of life and again during the adolescent growth period. [28]

In the normal spine, growth occurs symmetrically at the endplates on the upper and lower end of vertebrae leading to balanced spine in both coronal and sagittal plane. In the presence of congenital vertebral anomaly, there is imbalance of growth plates on either side of spine resulting in localized unilateral longitudinal growth imbalance and leading to increase in spinal deformity as child grows. Growth potential may also be inferred from assessment of the surrounding discs. Fully segmented vertebrae with healthy definable discs above and below have much more potential to cause a deformity compared to an unsegmented HV. The presence of a bar or fused ribs is a good predictor of curve progression. Either can act as a tether, and the combination tends to produce even more rapid curve progression. The severity of deformity can be graded from worse to good prognosis: unilateral unsegmented bar combined with single or multiple convex HV, followed by a unilateral unsegmented bar, double convex HV, and a single convex HV, with the block vertebra having the best prognosis. [29] An unilateral unsegmented bar adjacent to a contra lateral HV is the worst culprit which progresses more than 10º per annum in the thoracolumbar region. Sometimes a hemimetameric shift produces a progressive deformity in thoraco-lumbar and lumbosacral junction. [29]

The curves can be mild to severe in the cervico thoracic region. Some curves due to single or multiple HV at the cervico-thoracic junction can lead to progressive deformity which would require surgical fusion at an early age. [27] In the thoracic region, an unsegmented unilateral bar is often associated with fused ribs close to the apex of the curve on the concave side. In patients who have moderate or severe angulation, it is important to correct the angulation within this area before spine fusion. [17],[27] There is a global loss of trunk height and width leading to restriction in pulmonary function.

In the thoracolumbar area, congenital curves in general have the same prognosis as do curves involving the thoracic spine. HV which may be located laterally, posterolaterally, or directly posteriorly are often seen. Worse is the kyphosis and prognosis as the HV position is more posteriorly located in the spine. In the lumbar area, congenital curves may be associated with anomalies in the lower extremities or in the genitourinary system. A curve in this region of as much as 70o may produce little cosmetic deformity if the curve is not decompensated. [27] Majority of curves in the thoracic and lumbar region caused by a single fully segmented HV progresses slowly at the rate of 1º-2º per year. The most malignant and deforming type of HV occur at the lumbo-sacral junction which needs urgent attention.

Two unilateral HV have a worse prognosis since there is absence of four growth plates on one side of the spine resulting in much higher growth imbalance. These curves progress by 3º-4º per year. All these may reach more than 70º by the end of skeletal maturity [Figure 1], therefore require prophylactic treatment to balance the spine. [26] Block vertebrae are rare and produce a benign curve less than 20º. Miscellaneous congenital curves include double curves and anomalies extending throughout the spine and producing a series of small curvatures. Mixed deformities are unpredictable and need observation till skeletal maturity.


   Patient Evaluation Top


Clinical

A comprehensive prenatal history from the mother, including other siblings, should be recorded. Birth history of the child should include length of gestation, type of delivery, birth weight and complications. During infancy the record of developmental milestones should be noted since cognitive delay has been shown to correlate with curve progression.

The physical examination should include head to toe, especially to observe the facial features. Hemifacial microsomia (vertebral abnormalities associated with unilateral failure of formation of face and ear) is present in 2% patients with congenital spinal deformities. [30] Skin must be examined for "café au lait" spots or axillary freckles and presence of neurofibromas. Hairy midline patches may suggest evidence of spinal dysraphism. The lower limbs should be examined for cavus or club feet, vertical tali and any neurological deficit. The whole spinal examination should include record of obvious deformities with truncal imbalance, abnormalities of scapula with shoulder and pelvic tilt. In the upper thoracic curves, elevation of the shoulder on the convexity of the curve, with tilting of the head into the concavity, may be seen. Structural congenital curves do not show any prominent rib hump. Unbalanced curves in the thoracolumbar and lumbar region produce a pelvic obliquity with apparent shortening of the leg on the concave side of the curve. The trunk tends to list away from the apex of the curve, and this can cause difficulty in ambulation and balance. Rib cage deformities, chest or flank asymmetry, chest excursion and anomalies need to be evaluated.

Congenital rib anomalies occur most commonly on the concavity of a thoracic or thoracolumbar congenital scoliosis that is due to a unilateral failure of vertebral segmentation, and they do not appear to have an adverse effect on curve size or rate of progression. [31] Limitation in chest wall excursion may indicate a syndromic scoliosis and thoracic insufficiency syndrome. [32] Curve flexibility can be assessed by placing the child in a lateral position over the knee of the examiner or by suspending the infant over the arm of the examiner. A detailed neurological examination is carried out which should include, motor, sensory and reflexes. Abdominal reflex should be part of routine tests since it's an objective finding seen in some patients with Chiari malformation. [33]

Standing or sitting photographs provide a good record of the progress of the growth of the spine and the curvature. Respiratory function tests with full spirometry work-up are recommended in all patients; especially vital capacity. For any given Cobb angle the loss in vital capacity was approximately 15% greater in congenital compared to idiopathic scoliosis. [34]

Imaging

Plain radiographs remain the gold standard of imaging studies in diagnosis of congenital bony malformation, measurement of curve magnitude, progression and perhaps assessment of the growth potential of the vertebral anomaly. It is difficult to assess the radiographs because of patient's size, complexity of the deformity and superimposed bony structures. Preoperative computerized tomography (CT) helps to define the morphology of the spinal anomaly along with other associated defects. A three-dimensional reconstruction with sagittal multiplanar reformatting can be very useful in HV assessment. CT also helps to understand the chest wall deformities and lung volumes specially. in patients with thoracic wall insufficiency syndromes. Improvements in lung functions could be measured by CT following expansion thoracoplasty. [35]

All congenital scoliosis patients should undergo MRI scans preoperatively. Imaging of the brainstem to the sacrum is required to exclude associated conditions of the spine, the cranio-vertebral junction and the viscera. A T2w image through the apex of the curve and a T1w image to identify any cord abnormalities are essential. [25]


   Management Top


Historical perspective

Srimad Bhagwat Mahapuranam , an ancient Indian religious literature written between 3500 BC and 1800 BC, is the oldest existing reference to axial traction for the treatment of spinal deformity. One story tells of Lord Krishna correcting the hunchback of one of his devotees, Kubja, by applying axial traction. Kubja's back was deformed at three places; probably having scoliosis or kyphoscoliosis with one primary and two secondary curves. [36] Hippocrates (460-370 BC) was the first to invent devices based on principles of axial traction and three point correction for correction of curvatures of the spine and the management of spinal diseases. The devices used by Hippocrates for treatment of spinal deformities were the Hippocratic ladder, the Hippocratic board and the Hippocratic bench. [37] Galen (131 AD to 201 AD), a follower of Hippocrates, used axial traction with direct pressure. Ibn Sena (980 AD to 1037 AD) in the Middle East also used similar methods. Osteopaths of Turkey also used axial traction to correct spinal deformities. But gradually mechanical methods for the correction of the spinal deformity went into disrepute due to the invariable production of paraplegia. [36]

Goals of treatment

The primary goal of treatment of congenital scoliosis is to prevent the development of a severe deformity, to achieve a straight spine and preserve as much normal growth as possible. One does not need to wait until a severe deformity has developed and then attempt to perform a major and dangerous corrective procedure. For patients with a marked spinal growth imbalance, no treatment is perfect. [38] The best result that can be achieved is spinal growth that is balanced on the convexity. In these circumstances, the optimum result is a short, relatively straight spine rather than the severely crooked spine that would have developed without treatment. To achieve optimum results in patients with congenital scoliosis one must keep in mind the following three key factors:

  • Early diagnosis - If the diagnosis is made early (before the age of five years in a child), while the curvature is still small and flexible, an opportunity exists for prophylactic surgery to balance the growth of the spine.
  • Anticipation - The prognosis for deterioration of congenital scoliosis can be anticipated based on the amount of spinal growth remaining, the type and site of the vertebral anomaly, and the degree of growth imbalance that it produces. This requires careful study of good-quality spinal radiographs and knowledge of the natural history of the condition.
  • Prevention of deterioration - To prevent a severe spinal deformity is easier than to correct it. [39] A unilateral unsegmented bar, with or without contra lateral HV, is associated with a poor prognosis and therefore requires immediate surgical treatment no matter how young the patient. Other types of congenital scoliosis may be observed, but one of the most common errors is the failure to recognize slow and relentless progression until it is too late for prophylactic treatment. Therefore, all patients require radiological assessment at four to six-month intervals; once progression is established, immediate treatment is necessary to prevent further deterioration.


Non-operative

Most congenital scoliotic curves are nonflexible and therefore resistant to correction by bracing. Bracing can be used to prevent progression of secondary curves that develop above and below the congenital curve causing imbalance. As long as the curve remains controlled, bracing in such cases can be continued till skeletal maturity. Ideal indication for bracing is long curve involving at least eight or more vertebrae and has at least 50% flexibility.

Surgical management

Principles


Congenital spinal deformities require careful planning prior to surgery. The risk of high intra-operative neurological deficit [40] calls for a mandatory neurological monitoring. Kyphotic deformities are more at risk. Preoperative halo traction (in bed or in wheelchair) may be required in severe deformities which have been shown to be an effective preoperative tool. [41] Preoperative MRI is also mandatory to rule out any intraspinal pathology. The author and colleagues use motor-evoked potential and somato-sensory evoked potential to minimize the risk for a neurological deficit. [42] A wake-up test should also be performed which is effective in young patients. [43] We have had successful wake-up tests in two-year-olds. Referral to a neurosurgeon is mandatory if a patient has co-existing spinal cord abnormality. Cord tether release operations could be done at the same time as HV resections or in situ fusions. Standard positioning on a radiolucent spinal bed with headpiece, chest bolster and iliac crest pads are pre-requisites. For younger patients, gel rolls are sufficient to support the torso. A standard lateral decubitus position is required for open thoracic or thoraco-abdominal procedures. Patients undergoing simultaneous anterior and posterior procedures should be placed in the lateral decubitus position (convex side up) on a flat radiolucent operating table with entire anterior and posterior fields draped out. [44] Monitored controlled hypotension during operation is required to minimize blood loss to prevent any cord ischemia during the correction of the curve. Instrumentation in pediatric spine should be done after a preoperative CT evaluation of the pedicle anatomy. Size specific implants are available which should be used judiciously. [45] Titanium instrumentation should be used in all patients with congenital spine deformities since it is MRI compatible. Further imaging of the spinal axis and other organs becomes easier to visualize and interpret. Studies have suggested that instrumentation is feasible and safe in smaller patients who have congenital spine deformities. [46] The rate of union and correction of maintenance for posterior fusion is greater with instrumentation. Pedicle screw placement is safe and technically possible even in one year olds. [47],[48],[49],[50]

To create spinal stability and maintain the curve correction till fusion is attained, surgeons should be prepared to use hook or screw fixation at the required levels. Although autologous iliac crest bone graft is the gold standard, it should be reserved for older children due to limitations of harvesting in the younger and smaller children. Local grafts from rib resections during anterior exposure are ideal in smaller children. In some institutions allografts (freeze dried cortico-cancellous bone chips) may be available but these are expensive. [51] Crankshaft phenomenon is less predictable in congenital scoliosis. [52] Therefore, one should assess the potential for growth of the spine by determining the clarity of definable discs anteriorly.

Surgical procedures

In situ fusion

In situ fusion remains the most safe and reliable operation for congenital spine deformities. In situ fusion does not correct the deformity but is effective in controlling the progression of the curve. The ideal patient is one with unilateral failure of segmentation such as unilateral unsegmented bar with contra-lateral HV. [53],[54]

In situ fusion should be accomplished early in life before any significant curve develops. Other ideal indication is a deformity due to a congenital failure of formation that is less than 50º in a child with significant growth potential. [55] In situ fusion addresses a short segment and there is less rotation in the segment which makes a true crankshaft phenomenon unlikely. The curves due to HV at the junctional regions of the spine are more likely to lead to cosmetically disfiguring deformities and should have early in situ fusion. John Moe (1958) first published the critical analysis of fusion in congenital scoliosis. [56]

Convex epiphysiodesis

This procedure prevents future deformity and requires growth to obtain correction over time. [57] The ideal anomaly is a unilateral failure of formation (fully segmented HV) without any associated deformity. This is done as an anterior and posterior fusion on the convex side of the curvature by removing lateral half of adjacent discs. The concave side retains its growth potential and allows for some correction as the child grows. Winter et al. (1988) suggested that this operation should be reserved for patients younger than five years of age with a progressive curve of <70º involving five segments or less and presenting with a pure scoliosis not involving the cervical spine. [58] It is contraindicated if there is no concave growth potential as well as if the patient has any sagittal deformity.

Hemivertebra excision

The ideal patient is a child younger than five years of age with a fully segmented Hemivertebra (HV) at the junctional regions of the spine (cervico-thoracic or thoracolumbar or lumbosacral). HV can be resected by an anterior-posterior procedure or a posterior procedure only. Ruf and Harms (2002) reported success with the posterior only procedure and suggested that it is less invasive and equally effective in correcting local deformities. [59] Suk et al. (2005) suggested that increased operative time in combined procedure may increase the risk of complications and therefore only posterior technique offers the advantage of single stage surgery, the ability to address the deformity at the apex and of controlled shortening across the resection gap. [60] We believe it is a demanding procedure since this needs one to work around the cord or cauda and may make visualization difficult with increased blood loss. On the other hand, advocates of combined procedure suggest that it has greater correction ability including correction in the sagittal plane secondary to disc excision. [61] This approach gives better visualization of the anatomy. This also allows the surgeon to apply corrective forces from an anterior position while simultaneously applying compressive instrumentation posteriorly. This also reduces the risk of pseudoarthrosis and prevents the development of crankshaft phenomenon by the removal of growth plates.

Single/double stage correction with instrumentation and fusion

The partial or complete correction of the deformity depends on the type, site and degree of curvature without compromising the neurological function. Higher thoracic and cervical curves need special precaution as overcorrection of a lower thoracic or thoraco-lumbar curve may lead to shoulder or neck obliquity. Congenital flexible curves with normal segmentation and mild to moderate truncal imbalance may be managed by single stage posterior fusion and instrumentation. One must not attempt to correct fully a large and stiff congenital curve. It is beneficial to do anterior release and posterior fusions in two stage procedure in such curves. In the earlier reports posterior fusions were fraught with pseudoarthrosis due to lack of instrumentation. [53],[62] Modern segmental instrumentation has improved the maintenance of correction and also the fusion rate. [46] When trying to balance a decompensated spine in congenital scoliosis one applies the principle of stable vertebra. Most often we can balance the spine with posterior fusion and instrumentation [Figure 2]. One must be careful not to apply distractive forces with implants or to attempt significant corrections with instrumentation in rigid deformities.

Reconstructive osteotomy

The indications of osteotomy to correct the spinal balance are increasing pelvic obliquity, severe truncal decompensation, progressive deformity and evolving neurological deficit. These must be done along with anterior releases. The planning of the osteotomy is facilitated by preoperative 3D CT scans and rapid prototyping. [63] These are challenging cases and should be done by experienced surgeons. An osteotomy may be a part of a combined approach that involves resection of the HV and instrumentation and fusion of a more extended curve. Transpedicular eggshell osteotomy has been described for treating older patients with multiple anomalies and multiplanar deformity. Screws and hooks are placed above and below the osteotomy site before doing the osteotomy close to the end plates. [64]

Vertebral column resection

This procedure is rarely needed and can be a salvage procedure for severe deformity that cannot be managed by other means. They have been performed safely with good results. [59],[65] Ideally they are indicated in kyphotic deformity which is causing spinal cord compression. Vertebral column resections may be done as a staged anterior-posterior procedure or posterior only resection. Combined procedures are staged because of significant bleeding and are technically demanding. Resection of the anterior body is done all the way back to the posterior longitudinal ligament. Following complete resection, abundant autograft and allograft are placed to fill the gap. The posterior resection is carried out a week later. Frequently, multiple wake-up tests are required along with good neural monitoring.

Growing rods

Growing rod technique was initially reported by Paul Harrington in 1962. [66] John Moe et al. used the technique specifically for growing children referring to it as 'subcutaneous rod technique'. [67] Marchetti and Faldini described the technique of limited 'end fusions' to enhance the stability of implants at the anchor sites. [68] Most of these previously described methods have used single rod construct. Luque instrumentation without fusion, [69] referred to as the 'Luque trolley', has been in use since 1980s with long term follow-up studies revealing unwanted autofusion. [70] Akbarnia (2005) first introduced the concept of dual growing rod technique for early onset scoliosis and he has been using this technique for treating children with congenital scoliosis. [71]

Congenital scoliosis is associated with short stature and diminished trunk height. Further fusions can diminish the trunk height and diminish the thoracic volume leading to thoracic insufficiency. The goal of treatment with growing rods is to provide deformity correction and simultaneously allowing for continued spinal growth. Definitive fusion and instrumentation is carried out once maximal spinal growth is achieved. The age of five years is considered critical in a child's life when the child reaches two-thirds of the normal sitting height of an adult and the thoracic volume reaches 30% of adult size. Growing rods rely on normally segmented areas of spine to maintain growth while instrumentation aids in curve control. Proximal and distal anchors are placed by using claw constructs and spanning submuscular rods to gain correction while allowing growth. Lengthening is done every six months. The ideal patient is younger than five years of age and has a congenital deformity involving a long segment of the spine in which fusion would be deleterious for the growing spine. It is nowadays preferable to use dual rod construct instead of single rod since there is increased risk of hook dislodgement and rod breakage in single rod construct. Dual growing rod technique resulted in 5.7±2.9 cm of spinal growth during a 4.37±2.4 year treatment period. There was significantly greater growth and correction achieved in those lengthened more frequently. [72]

Expansion thoracoplasty and vertebral expandable prosthetic titanium rib

Congenital spinal deformities may be associated with fused ribs which can cause progressive diminution of pulmonary function and hemithorax volume. [31] The resultant poor thoracic and lung parenchymal maldevelopment causing limitation of pulmonary function was termed 'thoracic insufficiency syndrome' by Robert Campbell (2003). [32] The first eight years of life see maximum growth of the lung, bronchial tree and alveolar cell multiplication;. 50% of thoracic volume is attained by the first 10 years of life. Early spinal fusion in patients with pre-existing thoracic insufficiency syndrome may compound the effect of poor pulmonary function in a growing child. The progressive loss of hemithorax height is believed to be responsible for this loss of function. Expansion of the hemithorax by opening wedge osteotomies into an area of congenital rib fusions or adhesions was shown to have a positive effect on pulmonary function and lung volume. [73] The vertebral expandable prosthetic titanium rib (VEPTR) holds the expanded hemithorax in place which anchors proximally around the 2 nd /3 rd ribs. Distally the VEPTR may anchor into one of the three places: around distal ribs, into the lumbar spine or around the ilium bone. The device can be expanded through connectors every six months. This improves the thoracic height, lung volume and lung function. The ideal indication is a patient who has a constricted hemi-thorax secondary to congenital rib fusions. [74]


   Outcome Top


Reports of combined anterior and posterior HV excision have shown good curve correction with little deterioration over time. The mean postoperative curve correction obtained in HV resections in all parts of the spine range from 59 to 67% of the initial curve with little loss of correction at least two years post-operatively. HV resection via posterior approach has been reported to correct between 23º-36º with an average total of 3.7º loss of correction at final follow-up. [59],[75] In a long term study for single, fully segmented HV with single stage excision via posterior approach alone accounted for 54.3% scoliosis correction and 67.4% kyphosis correction. [76] In one study of six very young children who had sequential single stage anterior and posterior HV excision had mean postoperative correction of 67%. [77] The results of a lumbar HV resection and short-segment fusion through a lateral-posterior approach reported postoperative curve correction of 60.9%. [78] In a study of 10 patients with thoracic and thoracolumbar HV excision, the mean curve improvement was 59%. [79] The correction achieved with lumbosacral HV excision is much less as compared to other regions (10º-12º of correction). Hosalkar et al. (2004) evaluated the efficacy of the excision of a lumbosacral HV followed by fixation of the normal adjacent vertebra to the ilium with screws and cables. This was found to be biomechanically stronger construct in infants and young children with soft bones. [80]

In a long term follow-up (10-52 years) study from Nottingham, 52 patients (18M: 34F), had primary growth arrest and fusion. The etiology included: hemivertebrae (n=22), unsegmented bar (n=15), unsegmented bar with contra lateral HV (n=4), wedged vertebra (n=5), hemi-metameric shift (n=2) and unclassifiable (n=4). Co-existent intra-spinal anomalies were seen in 10 (19%) and associated syndromes in 11 patients. We grouped the patients into three surgical groups.

Group I: posterior in-situ fusion (n=16),

Group II: anterior/posterior correction and fusion (n=32)

Group III: anterior HV excision with correction and fusion (n=4).

The results suggested the following:

  1. Growth arrest and fusion performed at an early age can deteriorate over time especially if a stand-alone posterior in-situ fusion is performed.
  2. The timing of definitive surgery was influenced by type, site and number of HV and presence of unsegmented bar.
  3. Early definitive HV excision/fusion is recommended, especially for junctional HV in preventing long-term rigid deformities. [81]


Winter and Lonstein (2009) reported a 51 year follow-up study of 23 patients, eight patients of them with congenital spinal deformity. They reported that early spine fusion for deformity produced far better results than delayed fusion. A solid fusion at the end of growth remained unchanged. [82]


   Future Top


Laboratory as well as clinical studies suggests the need for VEPTR in patients with severe congenital scoliosis. Hell et al. (2005) reported the clinico-radiological improvement in spinal deformity treated with VEPTR. [83] As we know more about the technology and improve our growing rod technique we shall be able to minimize the number of operations in a child required to maintain the growth of the spine. Advances in genetic research may help in future to detect the spinal defect early in-utero and modulate the treatment with gene therapy.


   Conclusion Top


Congenital scoliosis is fraught with dilemmas in the minds of treating surgeons. In the last 50 years we have known more about the natural history of different types of congenital scoliosis and their behavior in the growing spine. One has to be astute in applying the correct principles for a successful outcome. A thorough preoperative assessment is essential and the correct surgical procedure depends on the anomaly itself and the degree of deformity. Early diagnosis and surgical treatment is the hallmark of successful outcome. Mild to moderate deformities can be managed successfully with fusion and instrumentation. HV excision in junctional areas of spine is necessary to correct the deformity. Posterior approach alone or in combination with anterior approach depends on the patient, the type of anomaly, the deformity and the surgeon. Occasionally, osteotomies may be necessary to balance the spine. Curvature in young children with long normally segmented areas of the spine may be managed by growing rods. Patients with associated thoracic insufficiency may be best treated by VEPTR.

 
   References Top

1.Shands AR, Eisberg HB. The incidence of scoliosis in the state of Delaware. A study of 50,000 minifilms of the chest made during a survey for tuberculosis. J Bone Joint Surg A 1955;37:1243-55.   Back to cited text no. 1      
2.Keynes RJ, Stern CD. Mechanisms of vertebrate segmentation. Development 1988;103:413-29.   Back to cited text no. 2  [PUBMED]  [FULLTEXT]  
3.Blake NS, Lynch A, Dowling F. Spinal cord abnormalities in congenital scoliosis. Ann Radiolol 1986;29:237-41.  Back to cited text no. 3      
4.Barrantes IB, Elia AJ, Wünsch K, Hrabe de Angelis MH, Mak TW, Rossant J, et al. Interaction between Notch signaling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 1999;9:470-80.   Back to cited text no. 4      
5.Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development 1995;121:1533-45.   Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J. Notch signalling and the synchronization of the somite segmentation clock. Nature 2000;408:475-9.   Back to cited text no. 6  [PUBMED]  [FULLTEXT]  
7.Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 1998;19:274-8.   Back to cited text no. 7  [PUBMED]  [FULLTEXT]  
8.Rivard CH, Narbaitz R, Uhthoff HK. Time of induction of congenital vertebral malformations in human and mouse embryo. Orthop Rev 1979;8:135-9.   Back to cited text no. 8      
9.Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000; 24:438-41.   Back to cited text no. 9  [PUBMED]  [FULLTEXT]  
10.Giampietro PF, Raggio CL, Reynolds CE, Shukla SK, McPherson E, Ghebranious N, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet 2005;68:448-53.   Back to cited text no. 10  [PUBMED]  [FULLTEXT]  
11.Maisenbacher MK, Han JS, O'brien ML, Tracy MR, Erol B, Schaffer AA, et al. Molecular analysis of congenital scoliosis: a candidate gene approach. Hum Genet 2005;116:416-9.   Back to cited text no. 11  [PUBMED]  [FULLTEXT]  
12.Farley FA, Hall J, Goldstein SA. Characteristics of congenital scoliosis in a mouse model. J Pediatr Orthop 2006;26:341-6.   Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Wynne-Davies R. Congenital vertebral anomalies: etiology and relationship to spina bifida cystica. J Med Genet 1975;12:280-8.   Back to cited text no. 13  [PUBMED]  [FULLTEXT]  
14.Goldstein LA, Waugh TR. Classification and terminology of scoliosis. Clin Orthop and Relat Res 1973;93:10-22.  Back to cited text no. 14      
15.MacEwan GD, Conway JJ, Miller WT. Congenital scoliosis with a unilateral bar. Radiology 1968;90:711-5.  Back to cited text no. 15      
16.Shawen SB, Belmont PJ Jr, Kuklo TR, Owens BD, Taylor KF, Kruse R, et al. Hemimetameric segmental shift: a case series and review. Spine 2002;27:539-44.   Back to cited text no. 16      
17.McMaster MJ. Congenital scoliosis caused by a unilateral failure of vertebral segmentation with contra lateral hemivertebrae. Spine 1998;23:998-1005.  Back to cited text no. 17  [PUBMED]  [FULLTEXT]  
18.Terminology Committee of the Scoliosis Research Society. A glossary of scoliosis terms. Spine 1976;1:57-8.   Back to cited text no. 18      
19.Beals RK, Robbins JR, Rolfe B. Anomalies associated with vertebral malformations. Spine 1993;18:1329-32.   Back to cited text no. 19  [PUBMED]    
20.MacEwen GD, Winter RB, Hardy JH. Evaluation of kidney anomalies in congenital scoliosis. J Bone Joint Surg A 1972;54:1451-4.  Back to cited text no. 20      
21.Basu PS, Elsebaie H, Noordeen MH. Congenital spinal deformity: a comprehensive assessment at presentation. Spine 2002;27:2255-9.   Back to cited text no. 21  [PUBMED]  [FULLTEXT]  
22.Opitz JM. The developmental field concept in clinical genetics. J Pediatr 1982;101:805-9.   Back to cited text no. 22  [PUBMED]    
23.Reckles LH, Peterson HA, Bianco AJ, Weidman WH. The association of scoliosis and congenital heart disease. J Bone Joint Surg A 1975;57:449-55.  Back to cited text no. 23      
24.Muirhead A, Conner AN. The assessment of lung function in children with scoliosis. J Bone Joint Surg A 1985;67:699-702.   Back to cited text no. 24      
25.Belmont PJ Jr, Kuklo TR, Taylor KF, Freedman BA, Prahinski JR, Kruse RW. Intraspinal anomalies associated with isolated congenital hemivertebra: the role of MRI. J Bone Joint Surg A 2004;86:1704-10.  Back to cited text no. 25      
26.McMaster MJ, Ohtsuka K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J Bone Joint Surg A 1982;64:1128-47.   Back to cited text no. 26      
27.Winter RB, Moe JH, Eilers VE. Congenital scoliosis: A study of 234 patients treated and untreated. J Bone Joint Surg A 1968;50:15-47.  Back to cited text no. 27      
28.Dimeglio A. Growth in pediatric orthopaedics. J Peditar Orthop 2001;21:549-55.   Back to cited text no. 28      
29.Kuhns JG, Hormell RS. Management of congenital scoliosis. Review of one hundred seventy cases. Arch Surg 1952;65:250-63.   Back to cited text no. 29      
30.Tsirikos AI, McMaster MJ. Goldenhar-associated conditions (hemifacial microsomia) and congenital deformities of the spine. Spine 2006;31:400-7.   Back to cited text no. 30      
31.Tsirikos AI, McMaster MJ. Congenital anomalies of the ribs and chest wall associated with congenital deformities of the spine. J Bone Joint Surg A 2005;87:2523-36.   Back to cited text no. 31      
32.Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, et al. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg A 2003;85:399-408.   Back to cited text no. 32      
33.Muhonen MG, Menzes AH, Sawin PD, Weinstein SL. Scoliosis in pediatric Chiari malformations without myelodisplasia. J Neurosurg 1992;77:69-77.   Back to cited text no. 33      
34.Muirhead A, Conner AN. The assessment of lung function in children with scoliosis. J Bone Joint Surg A 1985; 67: 699-702.   Back to cited text no. 34      
35.Hedequist D, Emans J. Congenital scoliosis. J Am Acad Orthop Surg 2004;12:266-75.  Back to cited text no. 35  [PUBMED]  [FULLTEXT]  
36.Kumar K. Spinal deformity and axial traction. Spine 1996;21:653-5.   Back to cited text no. 36  [PUBMED]  [FULLTEXT]  
37.Vasiliadis ES, Grivas TB, Kaspiris A. Historical overview of spinal deformities in ancient Greece. Scoliosisjournal 2009;4:6-8.  Back to cited text no. 37      
38.McMaster MJ. Spinal growth and congenital deformity of the spine. Spine 2006;31:2284-7.   Back to cited text no. 38  [PUBMED]  [FULLTEXT]  
39.Hall JE, Herndon WA, Levine CR. Surgical treatment of congenital scoliosis with or without Harrington instrumentation. J Bone Joint Surg A 1981;63:608-19.   Back to cited text no. 39      
40.MacEwen GD, Bunnell WP, Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society. J Bone Joint Surg A 1975;57:404-8.   Back to cited text no. 40      
41.Rinella A, Lenke L, Whitaker C, Kim Y, Park SS, Peelle M, et al. Peri-operative halo-gravity traction in the treatment of severe scoliosis and kyphosis. Spine 2005;30:475-82.   Back to cited text no. 41  [PUBMED]  [FULLTEXT]  
42.Mooney JF 3 rd , Bernstein R, Hennrikus WL Jr, MacEwen GD. Neurologic risk management in scoliosis surgery. J Pediatr Orthop 2002;22:683-9.   Back to cited text no. 42      
43.Brustowicz RM, Hall JE. In defense of wake-up test. Anesth Analg 1988;67:1019.   Back to cited text no. 43  [PUBMED]  [FULLTEXT]  
44.Hedequist DJ, Hall JE, Emans JB. Hemivertebra excision in children via simultaneous anterior and posterior exposures. J Pediatr Orthop 2005;25:60-3.   Back to cited text no. 44  [PUBMED]  [FULLTEXT]  
45.Lazar RD, Hall JE. Simultaneous anterior and posterior hemivertebrae excision. Clin Orthop Relat Res 1999;364:76-84.   Back to cited text no. 45  [PUBMED]    
46.Hedequist DJ, Hall JE, Emans JB. The safety and efficacy of spinal instrumentation in children with congenital spinal deformities. Spine 2004;29:2081-7.   Back to cited text no. 46  [PUBMED]  [FULLTEXT]  
47.O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis: Is pedicle fixation an anatomically visible technique? Spine 2000;25:2285-93.   Back to cited text no. 47  [PUBMED]  [FULLTEXT]  
48.Kim YJ, Lenke LG. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 2004;29:333-42.   Back to cited text no. 48      
49.Kuklo TR, Lenke LG, O'Brien MF, Lehman RA Jr, Polly DW Jr, Schroeder TM. Accuracy and efficacy of thoracic pedicle screw in curves more than 90 degrees. Spine 2005;30:222-6.   Back to cited text no. 49  [PUBMED]  [FULLTEXT]  
50.Ruf M, Harms J. Pedicle screws in 1- and 2- year-old children: technique, complications and effect on further growth. Spine 2002;27:E460-6.   Back to cited text no. 50  [PUBMED]  [FULLTEXT]  
51.Hedequist DJ. Surgical treatment of congenital scoliosis. Orthop Clin N Am 2007;38:497-509.   Back to cited text no. 51      
52.Kesling KL, Lonstein JE, Denis F, Perra JH, Schwender JD, Transfeldt EE, et al. The crankshaft phenomenon after posterior spinal arthrodesis for congenital scoliosis: a review of 54 patients. Spine 2003;28:267-71.   Back to cited text no. 52  [PUBMED]  [FULLTEXT]  
53.Winter RB, Moe JH. The results of spinal arthrodesis for congenital spinal deformity in patients younger than five years old. J Bone Joint Surg A 1982;64:419-32.   Back to cited text no. 53      
54.McMaster MJ, David CV. Hemivertebra as a cause of scoliosis. A study of 104 patients. J Bone Joint Surg B 1986;68:588-95.   Back to cited text no. 54      
55.McMaster MJ, Sing H. Natural history of congenital kyphosis and kyphoscoliosis. A study of 112 patients. J Bone Joint Surg A 1999;81:1367-83.   Back to cited text no. 55      
56.Moe JH. A critical analysis of methods of fusion for scoliosis. an evaluation in two hundred and sixty-six patients. J Bone Joint Surg A 1958;40:529-54.  Back to cited text no. 56      
57.Uzumcugil A, Cil A, Yazici M, Acaroglu E, Alanay A, Aksoy C,et al. Conves growth arrest in the treatment of congenital spinal deformities, revisited. J Pediatr Orthop 2004;24:658-66.   Back to cited text no. 57  [PUBMED]  [FULLTEXT]  
58.Winter RB, Lonstein J, Davis F, de la Rossa H. Convex growth arrest for progressive scoliosis due to hemevertebrae. J Pediatr Orthop 1988;8:633-8.  Back to cited text no. 58      
59.Ruf M, Harms J. Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine 2002;27:1116-23.  Back to cited text no. 59  [PUBMED]  [FULLTEXT]  
60.Suk SI, Chung ER, Lee SM, Lee JH, Kim SS, Kim JH. Posterior vertebral column resection in fixed lumbosacral deformity. Spine 2005;30:703-10.  Back to cited text no. 60      
61.Bollini G, Docquier P, Viehewger E, Launay F, Jouve JL. Lumbosacral hemivertebrae resection by combined approach. Spine 2006;31:1232-9.  Back to cited text no. 61      
62.Winter RB, Moe JH, Lonstein JE. Posterior spinal arthrodesis for congenital scoliosis. An analysis of the cases of 290 patients, 5-19years old. J Bone Joint Surg A 1984;66:1188-97.  Back to cited text no. 62      
63.Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H. Rapid Prototyping Technology for surgeries of the pediatric spine and pelvis: Benefits analysis. J Pediatr Orthop 2007;27:955-60.   Back to cited text no. 63  [PUBMED]  [FULLTEXT]  
64.Mikles MR, Graziano GP, Hensinger AR. Transpedicular eggshell osteotomies for congenital scoliosis using frameless stereotactic guidance. Spine 2001;26:2289-96.  Back to cited text no. 64  [PUBMED]  [FULLTEXT]  
65.Suk SI, Chung ER, Kim JH, Kim SS, Lee JS, Choi WK. Posterior vertebral column resection for severe rigid scoliosis. Spine 2005;30:1682-7.  Back to cited text no. 65  [PUBMED]  [FULLTEXT]  
66.Harrington PR. Treatment of scoliosis: correction and internal fixation by spine instrumentation. Am J Orthop 1962;44:591-610.  Back to cited text no. 66      
67.Moe JH, Cummin JL, Winter RB, Kharrat K. Harrington instrumentation without fusion combined with Milwaukee brace for difficult scoliosis problem in young children. Presented to Scoliosis Research Society, 1978, 59 th ed, Orthop Trans 1979;3:59.   Back to cited text no. 67      
68.Marchetti PG, Faldini A. End fusions in the treatment of some progressing or severe scoliosis in childhood or early adolescence. Presented to Scoliosis Research Society, 1977, Orthop Trans 1978;2:271.  Back to cited text no. 68      
69.Luque ER, Cardosa A. Segmental spinal instrumentation in growing children. Orthop Trans 1977;1:37.  Back to cited text no. 69      
70.Mardjetko SM, Hammerberg KW, Lubicky JP, Fister JS. The Luque trolley revisited: Review of nine cases requiring revision. Spine 1992;17:582-9.  Back to cited text no. 70  [PUBMED]    
71.Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rod technique in the treatment of progressive early onset scoliosis: A multicentre study. Spine 2005;30:S46-57.  Back to cited text no. 71  [PUBMED]  [FULLTEXT]  
72.Akbarnia BA, Breakwell LM, Marks DS, McCarthy RE, Thompson AG, Canale SK, et al. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine 2008;33:984-90.  Back to cited text no. 72  [PUBMED]  [FULLTEXT]  
73.Campbell RM Jr, Smith MD, Hell-Vocke AK. Expansion thoracoplasty: the surgical technique of opening wedge thoracostomy. Surgical technique. J Bone Joint Surg A 2004;86:51-64.   Back to cited text no. 73      
74.Campbell RM Jr, Adcox BM, Smith MD, Simmons JW 3 rd , Cofer BR, Inscore SC, et al. The effect of mid-thoracic VEPTR opening wedge thoracostomy on cervical tilt associated with congenital thoracic scoliosis in patients with thoracic insufficiency syndrome. Spine 2007;32:2171-7.  Back to cited text no. 74      
75.Shono Y, Abumi K, Kaneda K. One stage posterior HV resecrtion and correction using segmental posterior instrumentation. Spine 2001;26:752-57.  Back to cited text no. 75  [PUBMED]  [FULLTEXT]  
76.Nakamura H, Matsuda H, Konishi S, Yamano Y. Single stage excision of hemivertebrae via the posterior approach alone for congenital spine deformity: Follow-up period longer than ten years. Spine 2002;27:110-5.  Back to cited text no. 76  [PUBMED]  [FULLTEXT]  
77.Klemme WR, Polly DW Jr, Orchowski JR. Hemivertebral excision for congenital scoliosis in very young children. J Pediatr Orthop 2001;21:761-4.  Back to cited text no. 77  [PUBMED]  [FULLTEXT]  
78.Li X, Luo Z, Li X, Tao H, Du J, Wang Z. Hemivertebra resection for the treatment of congenital lumbarspinal scoliosis with lateral-posterior approach. Spine 2008;33:2001-6.  Back to cited text no. 78  [PUBMED]  [FULLTEXT]  
79.Hosalkar HS, Luedtke LM, Drummond DS. New technique in congenital scoliosis involving fixation to the pelvis after HV excision. Spine 2004;29:2581-7.   Back to cited text no. 79  [PUBMED]  [FULLTEXT]  
80.Deviren V, Berven S, Smith JA, Emami A, Hu SS, Bradford DS. Excision of hemivertebrae in the management of congenital scoliosis involving the thoracic and thoracolumbar spine. J Bone Joint Surg B 2001;83:486-500.  Back to cited text no. 80      
81.Debnath UK, Harshavardhana N, Webb JK. Definitive spinal fusion for Congenital Scoliosis- Long term results with a minimum follow-up of ten years. Presented at 2 nd International congress on Early Onset Scoliosis and Growing Spine (ICEOS), Montreal, Nov 2008.  Back to cited text no. 81      
82.Winter RB, Lonstein JE. Ultra long term follow-up of pediatric spinal deformity problems: 23 patients with a mean follow-up of 23 years. J Orthop Sci 2009;14:132-7.  Back to cited text no. 82  [PUBMED]  [FULLTEXT]  
83.Hell AK, Campbell RM, Hefti F. The vertical expandable prosthetic rib implant for the treatment of thoracic insufficiency syndrome associated with congenital and neuromusculsr scoliosis in young children. J Pediatr Orthop 2005;14:287-93.  Back to cited text no. 83      

Top
Correspondence Address:
Ujjwal K Debnath
The Centre for Spinal Studies & Surgery, Queens Medical Centre, University Hospital, Nottingham, NG7 2UH
United Kingdom
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5413.61997

Rights and Permissions


    Figures

  [Figure 1], [Figure 2]

This article has been cited by
1 A sonographic approach to prenatal classification of congenital spine anomalies
Debra Paoletti,Meiri Robertson,Sock Bee Sia
Australasian Journal of Ultrasound in Medicine. 2014; 17(1): 20
[Pubmed] | [DOI]
2 Comparison of osteotomy versus non-osteotomy approach for congenital scoliosis: a retrospective study of three surgical techniques
Shenghua Li,Yunsheng Ou,Bo Liu,Yong Zhu,Zhengxue Quan,Dianming Jiang
ANZ Journal of Surgery. 2014; : n/a
[Pubmed] | [DOI]
3 Magnetic resonance imaging of scoliosis
S M MCDONALD,J L TEH
Imaging. 2013; 22(1): 61549422
[Pubmed] | [DOI]
4 Vertebral column resection for complex congenital kyphoscoliosis and type I split spinal cord malformation
Hua Hui,Zhen-Xing Zhang,Tuan-Min Yang,Bao-Rong He,Ding-Jun Hao
European Spine Journal. 2013;
[Pubmed] | [DOI]
5 Congenital kypho-scoliosis: a case of thoracic insufficiency syndrome and the limitations of treatment
A. D. Chatterjee,K. Hassan,M. P. Grevitt
European Spine Journal. 2012; 21(6): 1043
[Pubmed] | [DOI]
6 Congenital kypho-scoliosis: A case of thoracic insufficiency syndrome and the limitations of treatment
Chatterjee, A.D. and Hassan, K. and Grevitt, M.P.
European Spine Journal. 2012; 21(6): 1043-1049
[Pubmed]
7 Surgical and conservative treatment of patients with congenital scoliosis: α search for long-term results
Kaspiris, A., Grivas, T.B., Weiss, H.-R., Turnbull, D.
Scoliosis. 2011; 6(1): art 12
[Pubmed]
8 Surgical and conservative treatment of patients with congenital scoliosis: a search for long-term results
Angelos Kaspiris,Theodoros B Grivas,Hans-Rudolf Weiss,Deborah Turnbull
Scoliosis. 2011; 6(1): 12
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
   
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


 
    Abstract
    Introduction
    Embryology
    Genetics
    Classification
    Morphology
    Associated Anomalies
    Natural History
    Patient Evaluation
    Management
    Outcome
    Future
    Conclusion
    References
    Article Figures
 

 Article Access Statistics
    Viewed4360    
    Printed181    
    Emailed5    
    PDF Downloaded387    
    Comments [Add]    
    Cited by others 8    

Recommend this journal