Neurobionplus
Home About Journal AHEAD OF PRINT Current Issue Back Issues Instructions Submission Search Subscribe Blog    
Login 

Users Online: 1380 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 44  |  Issue : 1  |  Page : 64-72

Multimodal intraoperative neuromonitoring in corrective surgery for adolescent idiopathic scoliosis: Evaluation of 354 consecutive cases


University Spine Center, National University Hospital, Singapore

Correspondence Address:
Vishal K Kundnani
Bombay Hospital & Medical Research Centre, 12, Marine Lines, Mumbai, India

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0019-5413.58608

Rights and Permissions

Background : Multimodal intraoperative neuromonitoring is recommended during corrective spinal surgery, and has been widely used in surgery for spinal deformity with successful outcomes. Despite successful outcomes of corrective surgery due to increased safety of the patients with the usage of spinal cord monitoring in many large spine centers, this modality has not yet achieved widespread popularity. We report the analysis of prospectively collected intraoperative neurophysiological monitoring data of 354 consecutive patients undergoing corrective surgery for adolescent idiopathic scoliosis (AIS) to establish the efficacy of multimodal neuromonitoring and to evaluate comparative sensitivity and specificity. Materials and Methods : The study group consisted of 354 (female = 309; male = 45) patients undergoing spinal deformity corrective surgery between 2004 and 2008. Patients were monitored using electrophysiological methods including somatosensory-evoked potentials and motor-evoked potentials simultaneously. Results : Mean age of patients was 13.6 years (±2.3 years). The operative procedures involved were instrumented fusion of the thoracic/lumbar/both curves, Baseline somatosensory-evoked potentials (SSEP) and neurogenic motor-evoked potentials (NMEP) were recorded successfully in all cases. Thirteen cases expressed significant alert to prompt reversal of intervention. All these 13 cases with significant alert had detectable NMEP alerts, whereas significant SSEP alert was detected in 8 cases. Two patients awoke with new neurological deficit (0.56%) and had significant intraoperative SSEP + NMEP alerts. There were no false positives with SSEP (high specificity) but 5 patients with false negatives with SSEP (38%) reduced its sensitivity. There was no false negative with NMEP but 2 of 13 cases were false positive with NMEP (15%). The specificity of SSEP (100%) is higher than NMEP (96%); however, the sensitivity of NMEP (100%) is far better than SSEP (51%). Due to these results, the overall sensitivity, specificity and positive predictive value of combined multimodality neuromonitoring in this adult deformity series was 100, 98.5 and 85%, respectively. Conclusion : Neurogenic motor-evoked potential (NMEP) monitoring appears to be superior to conventional SSEP monitoring for identifying evolving spinal cord injury. Used in conjunction, the sensitivity and specificity of combined neuromonitoring may reach up to 100%. Multimodality monitoring with SSEP + NMEP should be the standard of care.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4340    
    Printed206    
    Emailed5    
    PDF Downloaded224    
    Comments [Add]    
    Cited by others 22    

Recommend this journal